Supporting Information

Phase Stability of Nanolaminated Epitaxial ($Cr_{1-}xFe_x$)₂AlC MAX Phase Thin Films on MgO(111) and Al₂O₃(0001) for Use as Conductive Coatings

Hanna Pazniak*,§, Marc Stevens§, Martin Dahlqvist#, Benjamin Zingsem§,¶, Lidia Kibkalo¶, Merve Felek§,

Sergey Varnakov[⊥], Michael Farle^{§, ⊥}, Johanna Rosen[#], Ulf Wiedwald^{*,§}

§Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg,

Germany

*Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83

Linköping, Sweden

"Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425

Jülich, Germany

 $^{\perp}$ Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian

Federation

Corresponding authors email: hanna.pazniak@uni-due.de; ulf.wiedwald@uni-due.de

Table S1. Identified equilibrium simplex, i.e. set of most competing phases for $(Cr_{1-x}Fe_x)_2AlC$.

X	Equilibrium simplex	
0.0 (Cr ₂ AlC)	Cr ₂ AlC (in-AFM1)	
0.125	Cr ₂ AlC, Fe ₃ AlC, C, Fe ₅ Al ₈	
0.25	Cr ₂ AlC, Fe ₃ AlC, C, Fe ₅ Al ₈	
0.375	Cr ₂ AlC, Fe ₃ AlC, C, Fe ₅ Al ₈	
0.5	Cr ₂ AlC, Fe ₃ AlC, C, Fe ₅ Al ₈	
0.625	Cr ₂ AlC, Fe ₃ AlC, C, Fe ₅ Al ₈	
0.75	Fe ₃ AlC, C, Cr ₂ AlC, Fe ₅ Al ₈	
0.875	Fe ₃ AlC, C, Cr ₂ AlC, Fe ₅ Al ₈	
1.0 (Fe ₂ AlC)	Fe ₃ AlC, C, Fe ₅ Al ₈	

Figure S1. SEM image of the $(Cr_{0.9}Fe_{0.1})_2AlC$ film (a) and corresponding EDX elemental maps of Cr (b), Fe (c), Al (d), and C (e). (f) EDS spectrum of studied region with calculated Fe:Cr ratio.

Figure S2. SEM image of the $(Cr_{0.8}Fe_{0.2})_2AlC$ film (a) and corresponding EDX elemental maps of Cr (b), Fe (c), Al (d), and C (e). (f) EDS spectrum of studied region with calculated Fe:Cr ratio.

Figure S3. SEM images of the $(Cr_{0.8}Fe_{0.2})_2AlC$ film demonstrating the presence of melt-like regions on MgO(111) and $Al_2O_3(0001)$ substrates.

Table S2. Fe content, at.%, and (Cr+Fe)/Al ratio in (Cr_{0.9}Fe_{0.1})₂AlC

	Fe, at%	(Cr+Fe)/Al ratio
MAX structure	0.88-3.4 (2.8 average)	1.93-2.13
Intermetallic region	2.61-5.95	1.10-1.34

Magnetometry

Since the signal of the 40 nm (Cr_{0.9}Fe_{0.1})₂AlC on Al₂O₃(0001) film is expected to be small, the substrate signal and eventually a small sample holder signal shall be considered. The best choice for magnetometry is the Al₂O₃(0001) substrate due to the small amount of impurity atoms. Figure S4 (a) presents the raw data for a 2.5x2.5x0.5 mm³ Al₂O₃(0001) substrate piece after annealing at 600°C for 2h in UHV mimicking the film deposition by PLD. As expected, the magnetic response is diamagnetic and temperature independent. Around zero field, a small jump is obtained which originates from the sample holder or the Al₂O₃(0001) substrate. This is more obvious in Figure S4 (b) after subtraction of the diamagnetic slope. Below fields of about 3 kOe a tiny hysteresis loop appears which has saturation values of 8 · 10⁻⁶ emu and 5 · 10⁻⁶ emu for T = 5 K and T = 300 K, respectively. Importantly, the diamagnetic high-field susceptibility is a constant χ^{HF} = 59·10⁻⁶ emu mol⁻¹ Oe⁻¹ as shown in Figure S4 (c). We would like to emphasize that the paramagnetic impurities in MgO(111) single crystals make the analysis of VSM data extremely difficult [S1] and often the data is not conclusive for this substrate. Thus, we restrict ourselves to the Al₂O₃(0001) substrate.

The magnetic response of the 40 nm ($Cr_{0.9}Fe_{0.1}$)₂AlC on Al₂O₃(0001) is displayed in Figure S4 (d). While significant noise is present for larger fields in the hysteresis loop at T = 5 K, the room temperature data appears at high quality and after subtraction of the diamagnetic slope a S-shaped hysteresis is obtained as shown in Figure S4 (e). However, the overall sample magnetic moment is only $1\cdot10^{-5}$ emu and thus only a factor of 2 above the bare substrate and holder signal in Figure S4 (b). Ascribing this add-on signal to the film, the saturation magnetization of ($Cr_{0.9}Fe_{0.1}$)₂AlC is about 20 emu cm⁻³. This value is about 15 times lower as compared with epitaxial ($Cr_{0.8}Mn_{0.2}$)₂AlC MAX phase thin film (330 emu cm³) [S2]. The magnification around zero field in Figure S4 (f) shows a slightly open hysteresis loops which is temperature independent and likely originates from the holder.

Figure S4. Vibrating Sample Magnetometry of a 2.5x2.5x0.5 mm³ Al₂O₃(0001) substrate after annealing at 600° C for 2h in the PLD deposition chamber mimicking the deposition process (a-c). The Al₂O₃(0001) substrate shows the expected diamagnetic slope with a small jump around zero field. After slope subtraction, a small ferromagnetic signal remains (b). The high field susceptibility $\chi^{HF} = 59 \cdot 10^{-6}$ emu mol⁻¹ Oe⁻¹ of the Al₂O₃(0001) substrate is constant (c). Field dependence of the total sample magnetic moment μ of the 40 nm (Cr_{0.9}Fe_{0.1})₂AlC on Al₂O₃(0001) at 5 K and 300 K (d) and after subtraction of the diamagnetic slope (e). Panel (f) shows a magnification around the origin.

References:

S1. Novoselova, I.; Petruhins, A.; Wiedwald, U.; Weller, D.; Rosen, J.; Farle, M.; Salikhov, R. Long-term stability and thickness dependence of magnetism in thin $(Cr_{0.5}Mn_{0.5})_2GaC$ MAX phase films. *Materials Research Letters* **2019**, 7, 159–163, DOI:10.1080/21663831.2019.1570980.

S2. Mockute, A.; Persson, P. O. Å.; Magnus, F.; Ingason, A. S.; Olafsson, S.; Hultman, L.; Rosen, J. Synthesis and characterization of arc deposited magnetic (Cr,Mn)₂AlC MAX phase films. *physica status solidi* (*RRL*) – *Rapid Research Letters* **2014**, 8 (5), 420-423, DOI: 10.1002/pssr.201409087.